

主要特点

- 内置 500V 高压 MOSFET
- 内置高压启动电路
- 固定 15V 输出非隔离应用
- 适用于 BUCK, 线路简单
- 半封闭式稳态输出功率 7.5W @230VAC
- 内置频谱扩展技术,改善 EMI
- 过流保护(OCP)过温保护(OTP) 欠压保护(UVLO)等
- 封装形式: SOP8

典型应用

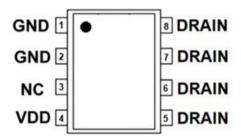
- 小家电
- 非隔离电源
- 电池保护板

典型应用电路

L 0	5 DRAIN	VDD 4	ESIJ
AC 1N4007	6 DRAIN 7 DRAIN	NC 3 1uF/25V	0000
$N \circ \longrightarrow \longrightarrow$	8 DRAIN	GND 1	220uF/25V ->
47uF/450V		ES2J	220dr/25V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
•	•	.	•

产品描述

DP3005E 是一款 PWM 和 PFM 混合控制模式的小功率开关芯片,用于外围元器件极精简的小功率非隔离开关电源。内置高压启动模块,实现系统快速启动、低待机功能。该芯片提供了完整的智能化保护功能,包括过载保护,欠压保护,过温保护等。


封装信息

型号	描述
DP3005E	SOP8,无铅,编带盘装,4000 颗/卷

产品说明

> 管脚封装

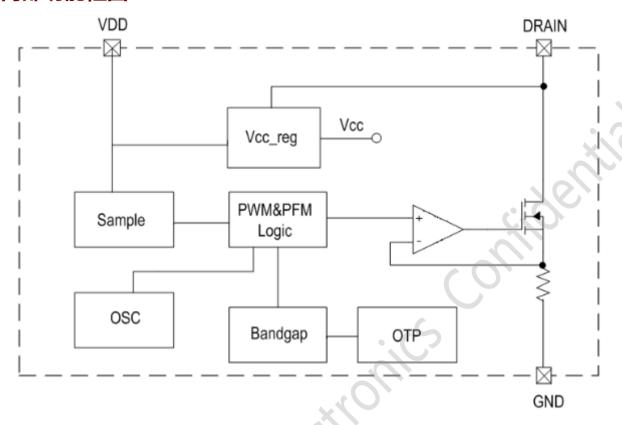
> 管脚功能描述

编号	管脚名称	描述	
1、2	GND	芯片地	
3	NC	悬空脚	
4	VDD	芯片电源端口	
5、6、7、8	DRAIN	MOS的DRAIN端口	

> 产品标记

DP3005E 为产品品名:

XXXXXX 第一个 X 代表年份最后一位,例 2020 即 0;第二个 X 代表月份,用 A-L 12 个字母表示;第三、四个 X 代表日,01-31 表示;最后两个 X 代表晶圆批号代码


> 绝对最大额定值

符号	说明	范围	单位
V _{DRAIN}	DRAIN 端口电压	-0.5~500	V
V _{DD}	VDD 端口电压	-0.5~20	V
RθJA ^{注 1}	PN 结到环境的热阻	40	°C /W
Tı	工作结温范围	-40~150	°C
T _{STG}	存储温度	-55~150	°C
V _{ESD}	HBM 人体放电模式	>2	KV

LPX-SP-0016_A.0_CN 2 / 9 2025/9/16

内部功能框图

电气工作参数 (无特殊说明, 环境温度为 25°C)

符号	参数	测试条件	最小	典型	最大	单位
V_{DRAIN_on}	DRAIN 工作电压	,	30		400	V
V_{DRAIN_BV}	DRAIN 端口耐压	-	500		-	V
I _{DRAIN}	高压启动电流			4		mA
I _{DRAIN_LEAK}	高压启动漏电流	VDD=18V		20		uA
Ron	MOS 导通电阻	I _{ds} =300mA	-	5.8		ohm
UVLO_EXIT	欠压保护退出阈值	-		12		V
UVLO_IN	欠压保护阈值			8.5		V
I_V_{DD}	VDD 电流			0.6		mA
I_V_{DDSD}	停止工作电流			100		uA
VDD_REF	VDD 采样基准电压			15		٧
D _{MAX}	最大占空比			50		%
I _{PEAK_LIMIT}	峰值限流		1.2			Α
T_DELAY	延迟时间			100		nS
TLEB	前沿消隐时间			300		nS
T_ON_MIN	最小导通时间			400		nS
T _{_SS}	软起时间			4		mS

LPX-SP-0016_A.0_CN 3 / 9 2025/9/16

DP3005E

freq	PWM 状态时频率		43	KHz
FD	频率抖动		5	%
OTP	温度保护点		145	$^{\circ}$

Developer Microelectronics Confidential

功能描述

DP3005E 是一款 PWM 和 PFM 混合控制模式的小功率开关芯片,用于外围元器件极精简的小功率非隔离开关电源。内置高压启动模块,实现系统快速启动、低待机功能。该芯片提供了完整的智能化保护功能,包括过载保护,欠压保护,过温保护等。

● 工作原理功能

系统输出通过反馈二极管对 VDD 供电,从而使得 VDD 电压表征输出电压,所以芯片通过 VDD 管脚电压采样从而控制输出电压。VDD 电压经过内部分压电阻分压得到采样电压。当采样电压与内部基准电压经过高精度误差放大器调节出 Ip 峰值电流,从而控制系统功率输出,即系统输出稳定在预设的15V 电压上。

● 高压启动功能

在启动阶段,内部高压启动管提供启动电流对 VDD 电容进行充电;当 VDD 电压达到 VDDON,芯片开始工作,高压启动管停止对 VDD 电容充电。

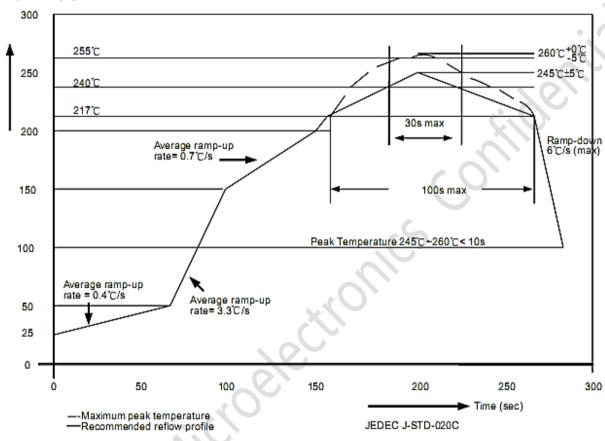
启动过程结束后,输出通过隔离二极管对 VDD 电容提供能量,供芯片继续工作。

但当芯片触发保护时,MOS 关闭,使得输出无法对 VDD 电容充电,导致 VDD 电压逐步下降,直到低于 UVLO_IN 电压,芯片重新启动,芯片异常自恢复的时间通过 VDD 电容调整, VDD 电容越大,自恢复时间越长。

● 过温保护功能

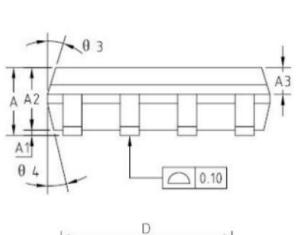
当内部温度过高,达到 150°C 过温点时,芯片将会关闭输出,以降低系统温度。直到芯片温度降低到过温恢复点,芯片将会重新启动。

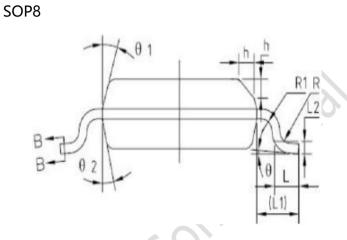
软启动功能


为了避免非隔离系统启动阶段因进入深度 CCM模式,带来较大电流尖峰,芯片设置软启动功能,通过阶梯限制 IP 峰值,从而使电流峰值平稳上升。同时芯片设计较小的 LEB 时间,以降低 LEB 时间内能量大小,避免系统启动时的高电流尖峰

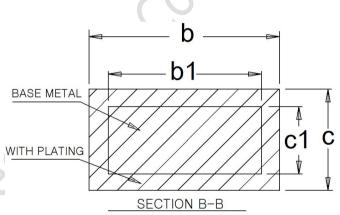
封装焊接制程

半导体产品遵循欧洲 RoHs 标准, 封装焊接制程锡炉温度符合 J-STD-020 标准。


Temperature (℃)




封装厚度	体积 mm³ < 350	体积 mm³: 350~2000	体积 mm³ ≥ 2000	
<1.6mm	260+0°C	260+0°C	260+0°C	
1.6mm~2.5mm	260+0°C	250+0°C	245+0°C	
≥2.5mm	250+0°C	245+0°C	245+0°C	



封装尺寸

Cumbal	Dimensions in Millimeters			
Symbol	Min	Nom	Max	
Α	1.45	1.55	1.65	
A1	0.10	0.15	0.20	
A2	1.353	1.40	1.453	
A3	0.55	0.60	0.65	
b	0.38	-	0.51	
b1	0.37	0.42	0.47	
C	0.17	-	0.25	
c1	0.17	0.20	0.23	
D	4.85	4.90	4.95	
E	5.85	600	6.15	
E1	3.85	3.90	3.95	
е	1.245	1.27	1.295	
L	0.45	0.60	0.75	
L1	-	1.040REF	-	
L2	-	0.250BSC	-	
Θ1-Θ4		12° REF		
h		0.40REF		
R		0.15° REF		
R1		0.15° REF		

修订历史

版本	修订日期	修订人	修订内容
A.0	2025.9.16	詹家明	首次发行
			. Jehila
			Collino
			electifo
		Mich	
	1000		
Oey	elobe		

知识产权声明

本规格书所披露的内容涉及知识产权的,本公司不做任何明示或暗示的保证,任何第三方不得使用、复制、 Developer Microelectronics Confidentie 转换,一经发现本公司必依法追究其法律责任,并赔偿由此对本公司造成的一切损失。